

Научно-производственная компания «ТЕСАРТ» - высокотехнологичное предприятие полного цикла в области комплексных радиоизмерительных систем и СВЧ электроники. Возникнув в 2015 году как объединение инженеров, исследователей, конструкторов и технологов Томского научного центра, компания разрабатывает и производит передовые решения в области микроволновых измерений, электромехатронных систем, телекоммуникаций и радаров.

Основная продукция компании:

- Опорно-поворотные устройства и прецизионные позиционеры;
- Радиопоглощающий материал;
- Безэховые экранированные камеры;
- Автоматизированные измерительно-вычислительные комплексы;
- СВЧ-электроника и оборудование для телекоммуникаций.

За 10 лет с момента основания, реализовано более 50 крупных проектов, основу которых составляет оборудование, приборы и комплексы собственной разработки и производства. На начало 2025 года в штате насчитывается более 120 человек, в команде трудятся доктора и кандидаты наук. Компания непрерывно модернизирует исследовательскую и производственную базу, расширяя и совершенствуя свои возможности.

Мы ответственно подходим к каждому проекту и заботимся о качестве наших продуктов и решений на всех стадиях жизненного цикла, включая техническое сопровождение в процессе эксплуатации. Для нас важно, чтобы выпускаемые решения и продукты помогали Заказчикам справиться с задачей любой сложности, являясь фундаментом успеха их проектов.

СОДЕРЖАНИЕ

ОБОРУДОВАНИЕ ДЛЯ СТАНЦИЙ СПУТНИКОВОЙ СВЯЗИ	
МАТРИЦЫ КОММУТАЦИИ L-ДИАПАЗОНА	
ЭЛЕКТРОМЕХАНИЧЕСКИЕ МАТРИЦЫ КОММУТАЦИИ	
МАТРИЦЫ КОММУТАЦИИ СЕРИИ ТМ	
КОНВЕРТЕРЫ ЧАСТОТЫ	
ВUC КОНВЕРТЕРЫ С-ДИАПАЗОНА	
ВИС КОНВЕРТЕРЫ КИ-ДИАПАЗОНА	
LNB КОНВЕРТЕРЫ С-ДИАПАЗОНА	
LNB КОНВЕРТЕРЫ КU-ДИАПАЗОНА	20
РЕШЕНИЯ ДЛЯ СВЯЗИ С ПОДВИЖНЫМИ ОБЪЕКТАМИ	
АНТЕННАЯ СИСТЕМА MAS	
СИСТЕМЫ ТЕСТИРОВАНИЯ ПОЛЕЗНОЙ НАГРУЗКИ	26
ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ	
ПОЛУЖЕСТКИЕ КАБЕЛЬНЫЕ СБОРКИ	
ГИБКИЕ КАБЕЛЬНЫЕ СБОРКИ	
ΚΟΡΠΥCA ΡΆΔ19	

ОБОРУДОВАНИЕ ДЛЯ СТАНЦИЙ СПУТНИКОВОЙ СВЯЗИ

В разделе представлены ключевые элементы инфраструктуры для приема и передачи спутниковых сигналов: матрицы коммутации сигналов, конвертеры частоты, ВUC-конвертеры, LNB-конвертеры обеспечивающие надежную работу станций связи.

МАТРИЦЫ КОММУТАЦИИ * Проектируем и изготавливаем по индивидуальным требованиям

КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Широкий диапазон частот.
- Низкие вносимые потери и высокая изоляция.
- Тип коммутации: все со всеми.
- Твердотельные переключатели с низкими вносимыми потерями и высокой скоростью срабатывания.
- Защита от перегрузок и помех.
- Сенсорное управление с передней панели.
- Удаленное управление SCPI-командами.
- Удаленное управление через Web-интерфейс по Ethernet.
- Режим самодиагностики.
- Возможность реализации многофункциональной структуры в едином корпусе.
- Гарантийное и постгарантийное обслуживание.

ЖАРАКТЕРИСТИКА

Компания НПК «TECAPT» ведет разработку линейки матриц коммутации в L-диапазоне частот для применения в области спутниковой связи на земных станциях. Тип коммутации «все со всеми» обеспечивает не только хорошую развязку между выходами и входами, но и имеет возможность одновременно коммутировать все входы на любой из выходов.

Разработка и производство твердотельных матриц коммутации осуществляются непосредственно НПК «TECAPT» в Томске, ключевые СВЧ-узлы изготавливаются на базе компонентов ведущих азиатских или российских производителей. Это позволяет обеспечивать уверенное сопровождение, гарантийное обслуживание и ремонт, модернизацию парка изделий заказчиков.

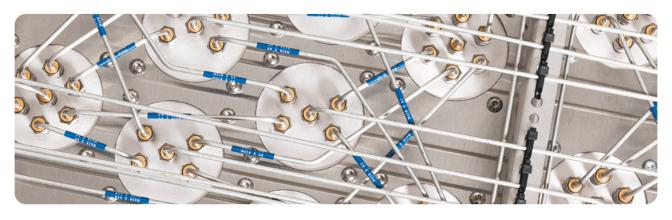
ПАРАМЕТРЫ МАТРИЦ КОММУТАЦИИ L-ДИАПАЗОНА

Nº	Параметр	Знач	ение	
1	Диапазон рабочих частот, МГц	950–2150		
2	Количество входов	от 8 до 64		
3	Количество выходов	д 8 то	10 64	
4	Тип коммутации	Bce co	всеми	
5	Коэффициент передачи, дБ (не менее)	C)	
6	Глубина регулировки коэффициента передачи для каждого канала, дБ (не менее)	30		
7	Номинальный шаг регулировки коэффициента передачи, дБ	0,5		
8	Максимальная мощность на входе, дБм (не более)	-10		
		Гарант. Тип.		
9	Неравномерность АЧХ в диапазоне рабочих частот, дБ (не более)	±1,5	±1	
10	Изоляция в диапазоне рабочих частот, дБ (не менее)	45	50	
11	Обратные потери по входу/выходу, дБ (не более)	-15	-17	
12	Резервирование питания	Наличие		
13	Управление	 SCPI-команды; WEB-интерфейс; Возможность управления с помощью сен сорного экрана на передней панели. 		

МОДЕЛЬНЫЙ РЯД ВЫПУСКАЕМЫХ РЕШЕНИЙ

Модель	Схема коммутации	Частотный диапазон, ГГц	Высота корпуса
AM-02-08-08	8в8	0,95-2,15	1U
AM-02-08-16	8 в 16		2U
AM-02-08-32	8 в 32		6U
AM-02-08-64	8 в 64		8U
AM-02-16-16	16 в 6		2U
AM-02-16-32	16 в 32		6U
AM-02-16-64	16 в 64		8U
AM-02-32-32	32 в 32		6U
AM-02-32-64	32 в 64		8U

ЗЛЕКТРОMEXAHUTECKUE MATPULЫ KOMMYTALIM OUTLA O



- Широкий диапазон частот.
- Электромеханические переключатели с низкими вносимыми потерями и высокой изоляцией.
- Максимальная повторяемость амплитуды и фазы при переключении.
- Защита от перегрузок и помех.
- Устанавливается в стойку 19".
- Сенсорное управление с передней панели.
- Удаленное управление SCPI-командами.
- Удаленное управление через Web-интерфейс по Ethernet.
- Режим самодиагностики.
- Возможность реализации многофункциональной структуры в едином корпусе.
- Гарантийное и постгарантийное обслуживание.

W ХАРАКТЕРИСТИКА

Матрицы коммутации НПК «TECAPT» имеют превосходные технические характеристики, обеспечивают высокую повторяемость, изоляцию и низкие вносимые потери. Широкий диапазон частот, многоканальная структура коммутации и большой выбор опций позволяют применять их для любых задач в области измерительной техники и спутниковой связи.

Разработка и производство электромеханических матриц коммутации осуществляются непосредственно НПК «TECAPT» в Томске. Ключевые СВЧ-узлы изготавливаются с использованием компонентов от ведущих производителей. Такой подход позволяет гарантировать надежное сопровождение продукции, оперативное гарантийное обслуживание и ремонт, а также модернизацию устройств для клиентов.

ПАРАМЕТРЫ ЭЛЕКТРОМЕХАНИЧЕСКИХ МАТРИЦ КОММУТАЦИИ

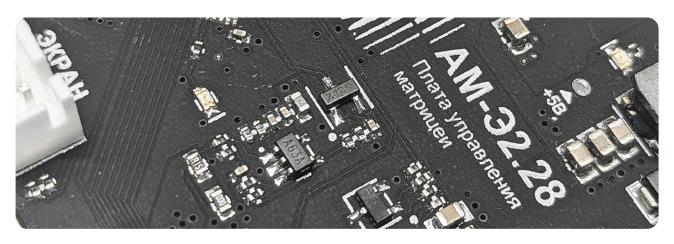
Nº	Параметр		Знач	ение
1	Диапазон рабочих частот, ГГц		0-40	
2	Количество входов		до 64	
3	Количество выходов		до	64
4	Максимальная мощность на входе,	дБм (не более)	3	0
			Гарант. Тип.	
		0-6 ГГц	0,3	0,25
	Вносимые потери переключате-	6-12,4 ГГц	0,4	0,35
5	лей в диапазонах частот, дБ	12,4-18 ГГц	0,5	0,4
	(не более):	18-26,5 ГГц	0,8	0,6
		26,5-40 ГГц	1	0,8
		0–6 ГГц	80	100
	M	6-12,4 ГГц	75	100
6	Изоляция между каналами в диапазонах частот, дБ (не менее):	12,4-18 ГГц	70	95
		18-26,5 ГГц	65	95
		26,5-40 ГГц	60	90
		0–6 ГГц	1,3	1,2
	KODII	6-12,4 ГГц	1,4	1,25
7	КСВН по входу/выходу в диапазонах частот (не более):	12,4-18 ГГц	1,5	1,3
	b grianaconax lactor (ne concej.	18-26,5 ГГц	1,6	1,35
		26,5-40 ГГц	1,7	1,5
8	Резервирование питания		Опционально	
9	Управление		 SCPI-команды; WEB-интерфейс; Возможность управления с помощью сенсорного экрана на передней панели. 	

МОДЕЛЬНЫЙ РЯД ВЫПУСКАЕМЫХ РЕШЕНИЙ

Модель	Схема коммутации	Частотный диапазон, ГГц	Высота корпуса
AM-18-2-SP4T		0–18	
AM-26-2-SP4T	2 SP4T	0-26,5	
AM-40-2-SP4T		0-40	
AM-18-2-SP6T		0–18	
AM-26-2-SP6T	2 SP6T	0-26,5	2U
AM-40-2-SP6T		0-40	
AM-18-2-SP8T		0–18	
AM-26-2-SP8T	2 SP8T	0-26,5	
AM-40-2-SP8T			
AM-40-1-SP36T	1x36	0-40	4U
AM-40-1-4P36T	4x36		6U

* Проектируем и изготавливаем по индивидуальным требованиям

Ж КЛЮЧЕВЫЕ ОСОБЕННОСТИ


- Многоканальная структура до 8 портов.
- Возможность индивидуальной конфигурации переключателей.
- Широкий диапазон частот.
- Минимальные вносимые потери и высокая повторяемость.
- Сенсорное управления с передней панели.
- Удаленное управление SCPI-командами.
- Удаленное управление через Web-интерфейс по Ethernet.
- Режим самодиагностики.
- Возможность реализации многофункциональной структуры в едином корпусе.
- Гарантийное и постгарантийное обслуживание.

ХАРАКТЕРИСТИКА

Компания НПК «TECAPT» выпускает матрицы коммутации в настольном исполнении, которые применяются в телекоммуникациях, радиолокации, спутниковой связи, а также в научных исследованиях и разработках. Минимальные вносимые потери, высокая повторяемость амплитуды и фазы гарантируют стабильность параметров в сложных измерительных системах.

Разработкой и производством матриц коммутации занимается НПК «TECAPT» в Томске, ключевые СВЧ-узлы изготавливаются на базе компонентов ведущих производителей. Это позволяет обеспечивать уверенное сопровождение, гарантийное обслуживание и ремонт, модернизацию парка изделий заказчиков.

ПАРАМЕТРЫ МАТРИЦ КОММУТАЦИИ СЕРИИ ТМ

Nº	Параметр		Знач	ение	
1	Диапазон рабочих частот, ГГц		0-40		
2	Количество каналов		от 1 до 2		
3	Количество выходов переключател	я	от 2 до 8		
4	Тип коммутации		2xSPxT		
5	Максимальная мощность на входе, д	дБм (не более)	30		
			Гарант.	Тип.	
		0–6 ГГц	0,3	0,25	
	Duggital is notony b nyonosovov	6-12,4 ГГц	0,4	0,35	
6	Вносимые потери в диапазонах частот, дБ (не более):	12,4-18 ГГц	0,5	0,4	
	, 42 (18-26,5 ГГц	0,8	0,6	
		26,5-40 ГГц	1	0,8	
	Изоляция между каналами в диапазонах частот, дБ (не менее):	0–6 ГГц	80	100	
		6-12,4 ГГц	75	100	
7		12,4-18 ГГц	70	95	
		18-26,5 ГГц	65	95	
		26,5-40 ГГц	60	90	
		0-6 ГГц	1,3	1,2	
	KODII	6-12,4 ГГц	1,4	1,25	
8	КСВН по входу/выходу в диапазонах частот (не более):	12,4-18 ГГц	1,5	1,3	
	B Andriacenax lactor (ne conce).	18-26,5 ГГц	1,6	1,35	
		26,5-40 ГГц	1,7	1,5	
9	Управление		SCPI-команды по Ethernet;WEB-интерфейс;		
			 Возможность управления с помощью сенсорного экрана на передней панели. 		

МОДЕЛЬНЫЙ РЯД ВЫПУСКАЕМЫХ РЕШЕНИЙ

Модель	Схема коммутации	Частотный диапазон, ГГц	Количество каналов	Габариты			
TM-18-2-SP4T	1в4	0–18					
TM-18-2-SP6T	1в6	0–18	2				
TM-18-2-SP8T	1в8	0–18					
TM-26-2-SP4T	1в4	0-26,5					
TM-26-2-SP6T	1в6	0-26,5		2	242 х 107 х 265 мм		
TM-26-2-SP8T	1в8	0-26,5					
TM-40-2-SP4T	1в4	0-40					
TM-40-2-SP6T	1в6	0-40					
TM-40-2-SP8T	1в8	0-40					

КОНВЕРТЕРЫ ЧАСТОТЫ

Диапазоны частот: L, C, X, Ku, K, Ka

* Проектируем и изготавливаем по индивидуальным требованиям

Ж КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Исполнение для всех типовых литер (L, C, X, Ки, К, Ка), возможность индивидуального частотного плана, компоновки, технических требований.
- Частотные планы с улучшенной фильтрацией продуктов преобразования.
- Изготовлены на СВЧ-модулях собственной разработки и производства.
- Гетеродин построен на базе передовых технологий, что позволяет обеспечивать сверх низкий уровень фазового шума.
- Резервирование питания 220 В.
- Плавная регулировка выходной мощности с высоким динамическим диапазоном.
- Наличие входа для подключения внешнего гетеродина.
- Автоматический захват сигнала синхронизации.
- Сенсорное управление с передней панели.
- Удаленное управление SCPI-командами.
- Удаленное управление с помощью WEB-интерфейса.
- Режим самодиагностики.
- Возможность реализации многоканальной структуры в едином корпусе.
- Гарантийное и постгарантийное обслуживание.

XAPAKTEPUCTUKA

Конвертеры частоты НПК «TECAPT» имеют превосходные технические характеристики, обеспечивают высокую надежность и производительность. Ультранизкие фазовые шумы и высокий динамический диапазон позволяют применять их для любых задач в области спутниковой связи и не только.

KOHBEPTEPЫ YACTOTЫ 12/35

Разработкой и производством конвертеров занимается НПК «TECAPT» в Томске, ключевые СВЧ-узлы изготавливаются на базе кристаллов ведущих азиатских или российских производителей. Это позволяет обеспечивать уверенное сопровождение, гарантийное обслуживание и ремонт, модернизацию парка изделий заказчиков.

МОДЕЛЬНЫЙ РЯД СЕРИЙНО ВЫПУСКАЕМЫХ РЕШЕНИЙ КОНВЕРТЕРОВ

Повышающие модели	Частотный диапазон (МГц)
AC0206-U1-C	5780-6650
AC0207-U1-C2	6450-7050
AC0208-U1-X	7900-8400
AC0214-U1-Ku	14000-14500
AC0214-U1-Ku2	13750-14500
AC0230-U1-Ka	27500-30000
AC0228-U1-Ka2	27500-28500
AC0229-U1-Ka3	28300-29300
AC0230-U1-Ka4	29000-30000
AC0231-U1-Ka5	30000-31000
AC0238-U1-Ka6	37000-38000
AC0240-U1-Ka7	39000-40000

Понижающие модели	Частотный диапазон (МГц)
AC0204-D1-C	3400-4200
AC0204-D1-C2	4500-4800
AC0207-D1-X	7250-7750
AC0212-D1-Ku	10700-12750
AC0211-D1-Ku2	10700-11750
AC0212-D1-Ku3	11700-12750
AC0221-D1-Ka	17200-21200
AC0218-D1-Ka2	17200-18200
AC0218-D1-Ka3	17700-18700
AC0219-D1-Ka4	18500-19500
AC0220-D1-Ka5	19200-20200
AC0221-D1-Ka6	20200-21200
AC0227-D1-Ka7	26000-27000

ВUC-КОНВЕРТЕРЫ С-ДИАПАЗОНА

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ BUC0206 5,85 - 6,425 ГГЦ

Nº	№ Параметр Значение		ение	
1	Диапазон рабочих частот по входу, МГц		950-	-1525
2	Диапазон рабочих частот по выходу, МГц		5850-6425	
3	Коэффициент передачи, дБ (не менее) і		5	0
4	Глубина регулировки коэффициента передачи, дБ (н	іе менее)	3	0
5	Номинальный шаг регулировки коэффициента передачи, дБ		0,5	
6	Максимальная допустимая (неразрушающая) мощнос на входе конвертера, дБм, (не более)	ТЬ	1	0
7	Выходная мощность Psat в зависимости от исполнения конвертера, дБм, (не менее)		Исполнение BUC0206-4W BUC0206-20W BUC0206-50W	Psat 50 Вт 100 Вт 150 Вт
			Гарант.	Тип.
8	Уровень внутриполосных продуктов преобразования в диа- пазоне рабочих частот, дБн (не более) ²		-40	-55
9	Уровень внутриполосных интермодуляционных продуктов, дБн, (не более) ³		-25	-40
10	Неравномерность коэффициента передачи в диапа: рабочих частот, дБ (не более)	зоне	±1,5	±1,0
11	Неравномерность ГВЗ в диапазоне рабочих частот, нс (не более)		±2	±1
12	Обратные потери по входу/выходу конвертера, дБ, (не более)	-13	-17
		100 Гц	-78	-84
		1 кГц	-90	-94
13	Уровень плотности мощности фазового шума гетеродина на отстройке, дБн/Гц (не более)	10 кГц	-104	-108
		100 кГц	-107	-113
		1 мГц	-115	-122

³ Измерение проводится двухтональным методом, с расстройкой по частоте 5 МГц в диапазоне рабочих частот, при суммарном выходном уровне мощности сигнала с отстройкой -3 дБ от Psat.

¹ Уточняется при проектировании, в зависимости от исполнения и управления.

 $^{^{2}}$ При уровне сигнала по выходу Psat-3 дБ и максимальном коэффициенте усиления.

Nº Параметр Значение • От внутреннего опорного сигнала. 14 Способы синхронизации частоты • От внешнего источника 10МГц. с автоматическим захватом опорного сигнала. 15 Тип ВЧ-соединителей по входу N-тип WR-137 16 Тип ВЧ-соединителей по выходу от 210 до 230 В (50 Гц) 17 Напряжение электропитания 350 Пиковая потребляемая мощность, Вт (не более) • SCPI-команды по Ethernet; • WEB-интерфейс; 19 Управление конвертером • RS485 с программным обеспечением для ПК под ОС Windows. • Контроль превышения и отображения мощности по входу; • Контроль температуры; • Статус наличия и захвата опорного сигнала; • Перенапряжение и защита 20 Дополнительные контролируемые параметры по току; • Контроль работы вентилятора в автоматическом и принудительном режимах; • Отключение/включение СВЧ-тракта; • Режим самодиагностики; Рабочие условия эксплуатации при температуре от -40 до +55 окружающей среды, °С

BUC-KOHBEPTEPЫ KU-ДИАПАЗОНА

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ВUC0214 13,75-14,5 ГГЦ

Nº	Параметр		Знач	ение
1	Диапазон рабочих частот по входу, МГц		950-	1700
2	Диапазон рабочих частот по выходу, МГц		13750-14500	
3	Коэффициент передачи, дБ (не менее) 1		5	0
4	Глубина регулировки коэффициента передачи, дБ (н	не менее)	3	0
5	Номинальный шаг регулировки коэффициента передачи, дБ		0,	5
6	Максимальная мощность на входе, дБм (не более)		-1	
7	Выходная мощность Psat в зависимости от исполнения конвертера		Исполнение BUC0231-U40 BUC0231-U100 BUC0231-U150	Psat 40 Вт 100 Вт 150 Вт
			Гарант.	Тип.
8	Уровень внутриполосных продуктов преобразования в диа- пазоне рабочих частот, дБн (не более) ²		-40	-55
9	Уровень внутриполосных интермодуляционных продуктов, дБн, (не более) ³		-25	-35
10	Неравномерность коэффициента передачи в диапа рабочих частот, дБ (не более)	зоне	±1,8	±1,2
11	Неравномерность ГВЗ в диапазоне рабочих частот, нс (не более)		±2,5	±1,5
		10 Гц	-58	-61
		100 Гц	-76	-81
12	Уровень плотности мощности фазового шума ге-	1 кГц	-88	-93
IΖ	теродина на отстройке, дБн/Гц (не более)	10 кГц	-94	-98
		100 кГц	-100	-103
		1 МГц	-115	-125
13	Обратные потери по входу/выходу конвертера, дБ, (не более)		-10	-15

³ Измерение проводится двухтональным методом, с расстройкой по частоте 5 МГц в диапазоне рабочих частот при максимальном уровне выходной мошности Psat-3 дБ.

¹ Уточняется при проектировании, в зависимости от исполнения и управления.

 $^{^{2}}$ При уровне сигнала по выходу Psat-3 дБ и максимальном коэффициенте усиления.

Nº Параметр Значение • От внутреннего опорного сигнала; 14 Способы синхронизации частоты • От внешнего опорного генератора 10 МГц, номинальное входное сопротивление 50 Ом. 15 Тип ВЧ-соединителей по входу SMA / N-тип / F-тип SMA / WR-75 16 Тип ВЧ-соединителей по выходу 220 В (50 Гц) 17 Напряжение электропитания 1200 18 Пиковая потребляемая мощность, Вт (не более) **LAN, RS485** 19 Управление конвертером 1 • Режим самодиагностики; • Контроль превышения входной мощности; • Контроль температуры; • Статус наличия и захвата опорного сигнала; 20 Дополнительные контролируемые параметры • Перенапряжение и защита по току; • Автоматическая активная система охлаждения; • Отключение/ включение СВЧ-тракта. 21 Габаритные размеры конвертера, мм (не более) 350x271x250 Рабочие условия эксплуатации при температуре от -40 до +50 окружающей среды, °С

 $^{^{\}scriptscriptstyle 1}$ Уточняется при проектировании, в зависимости от исполнения и управления.

LNB-KOHBEPTEPЫ С-ДИАПАЗОНА

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ LNB0204 3,4-4,2 ГГЦ

Nº	Параметр		Знач	ение
1	Диапазон рабочих частот по входу, МГц		3400-4200	
2	Диапазон рабочих частот по выходу, МГц		950–1750	
3	Частота гетеродина, МГц		51	50
4	Коэффициент передачи, дБ, (не менее)		6	0
5	Максимальная допустимая (неразрушающая) мощно на входе конвертера, дБм, (не более)	ОСТЬ	-2	40
6	Выходная мощность в точке Р1, дБм (не менее)		1	0
			Гарант.	Тип.
7	Коэффициент шума, дБ (не более) ²		1,0	0,85
8	Уровень внутриполосных продуктов преобразования в диапазоне рабочих частот, дБн (не более)		-40	-55
9	Уровень внутриполосных интермодуляционных продуктов, дБн, (не более) ³		-25	-40
10	Неравномерность АЧХ в диапазоне рабочих частот, дБ (не более)		±1,5	±1
11	Неравномерность ГВЗ в диапазоне рабочих частот, нс (не более)		±2	±1
		100 Гц	-78	-84
		1 кГц	-90	-94
12	Уровень плотности мощности фазового шума гетеродина на отстройке, дБн/Гц (не более)	10 кГц	-104	-108
		100 кГц	-107	-113
		1 МГц	-115	-122
13	Обратные потери по входу/выходу конвертера, дБ, (не более)		-10	-15

³ Измерение проводится двухтональным методом, с расстройкой по частоте 5 МГц в диапазоне рабочих частот при суммарном выходном уровне мощности сигнала не более PI (10 дБм).

Частотный план с инверсией спектра.

² При измерении в нормальных условиях.

Nº Параметр Значение • От внутреннего опорного сигнала; 14 Способы синхронизации частоты • От внешнего источника 10 МГц, с автоматическим захватом опорного сигнала. 15 Тип ВЧ-соединителей по входу WR229 N-тип (розетка), является входом 16 Тип ВЧ-соединителей по выходу питания и опорного сигнала частотой 10 МГц. 17 Напряжение электропитания от +15 до +24 В (DC) 18 Пиковая потребляемая мощность, Вт (не более) 12 • Руководство по эксплуатации и формуляр на русском языке; 19 Комплект поставки • Ударопрочный транспортировочный кейс. Рабочие условия эксплуатации при температуре от -40 до +50 окружающей среды, °С

LNB-KOHBEPTEPЫ KU-ДИАПАЗОНА

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ LNB0213 10,7-12,75 ГГЦ

Nº	Параметр	Знач	ение
1	Диапазон рабочих частот по входу, МГц	10700-	-12750
2	Диапазон рабочих частот по выходу А, МГц	950-	1950
3	Диапазон рабочих частот по выходу В, МГц	950-	2000
4	Частота гетеродина канала А, МГц	97	50
5	Частота гетеродина канала В, МГц	107	50
6	Коэффициент передачи, дБ (не менее)	6	0
7	Максимальная допустимая (неразрушающая) мощность на входе конвертера, дБм (не более)	-40	
8	Выходная мощность в точке Р1, дБм, (не менее)	10	0
		Гарант.	Тип.
9	Коэффициент шума, дБ (не более) і	1,15	0,9
10	Уровень внутриполосных продуктов преобразования в диапазоне рабочих частот, дБн (не более) ²	-40	-55
11	Уровень внутриполосных гармонических составляющих в диапазоне рабочих частот, дБн (не более) ²	-20	-25
12	Уровень внутриполосных интермодуляционных продуктов, дБн (не более) ³	-25	-40
13	Неравномерность АЧХ в диапазоне рабочих частот для каждого канала, дБ, (не более)	±1,5	±1
14	Неравномерность ГВЗ в диапазоне рабочих частот для каждого канала, нс (не более)	±2	±1

³ Измерение проводится двухтональным методом, с расстройкой по частоте 5 МГц в диапазоне рабочих частот при суммарном выходном уровне мощности не более РI (10 дБм).

¹ При измерении в нормальных условиях.

² При уровне мощности сигнала на выходе в точке PI (10 дБм) и максимальном коэффициенте усиления.

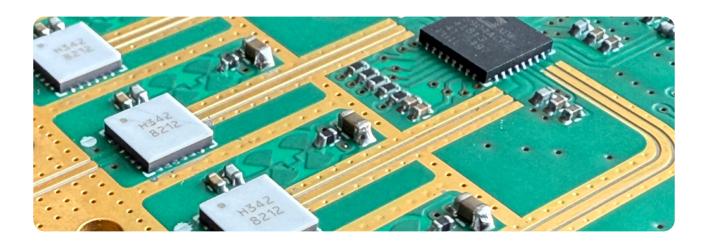
Nº Параметр Значение Гарант. Тип. 100 Гц -63 -68 -73 -78 1 кГц Уровень плотности мощности фазового шума 10 кГц -83 -88 гетеродина на отстройке, дБн/Гц (не более) -93 -98 100 кГц 1 МГц -105 -110 -15 16 Обратные потери по входу/выходу конвертера, дБ, (не более) -10 • От внутреннего опорного сигнала; 17 Способы синхронизации частоты • От внешнего источника 10МГц, с автоматическим захватом опорного сигнала. 18 Тип ВЧ-соединителей по входу WR75 N-тип (розетка) 19 Тип ВЧ-соединителей по выходу А N-тип (розетка), является входом 20 Тип ВЧ-соединителей по выходу В питания и опорного сигнала частотой 10 МГц от +15 до +24 В (DC) 21 Напряжение электропитания 12 22 Пиковая потребляемая мощность, Вт (не более) Рабочие условия эксплуатации при температуре 23 от -40 до +50 окружающей среды, °С • Руководство по эксплуатации и формуляр на русском языке; 24 Комплект поставки • Ударопрочный транспортировочный кейс.

РЕШЕНИЯ ДЛЯ СВЯЗИ С ПОДВИЖНЫМИ ОБЪЕКТАМИ

В разделе представлено оборудование, предназначенное для обеспечения спутниковой связи с различными типами подвижных платформ на базе антенных систем с электронным управлением лучом, которые позволяют поддерживать стабильную связь во время движения.

AHTEHHAЯ CUCTEMA MAS

Диапазоны частот: Ku, Ka


* Проектируем и изготавливаем по индивидуальным требованиям

- Низкопрофильный корпус не нарушает аэродинамику транспорта.
- Поддержка стандартных диапазонов частот и протоколов связи ГСО-операторов.
- Автоматическое удержание направления луча на спутник во время движения.
- Отсутствие механических частей и высокая надежность.
- Возможность работы с двумя лучами (спутниками) одновременно.
- Легкая конструкция и минимальное время развертывания.
- Оптимизированное энергопотребление.

Ж ХАРАКТЕРИСТИКА

Электронно-управляемая плоская антенная система Ки-диапазона открывает новые возможности для подвижной и стационарной спутниковой связи через геостационарные спутники (ГСО). Благодаря фазированной решётке и полностью электронному управлению лучом, эта антенна обеспечивает надёжную связь в движении — на железнодорожном, морском, автомобильном транспорте и в стационарных точках доступа по всей России.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ АНТЕННЫХ СИСТЕМ MAS

Nº	Параметр	MAS-0101	MAS-0102	MAS-0104	MAS-0204	MAS-0208
1	Скорость приёма, МБит/с	1	1	1	3	3
2	Скорость передачи, МБит/с	0,5	1	3,5	3,5	6
3	Диапазон рабочих частот для трактов передачи, ГГц	13,75–14,5	13,75–14,5	13,75–14,5	13,75–14,5	13,75–14,5
4	Диапазон рабочих частот принимаемых сигналов, ГГц	10,7–12,7	10,7–12,7	10,7–12,7	10,7–12,7	10,7–12,7
5	Тип поляризации	круговая, линейная	круговая, линейная	круговая, линейная	круговая, линейная	круговая, линейная
6	Добротность	4.5 дБ/К (@60° от- клонение на угол ска- нирования, @15° угол места)	4.5 дБ/К (@60° от- клонение на угол ска- нирования, @15° угол места)	4.5 дБ/К (@60° от- клонение на угол ска- нирования, @15° угол места)	6,5 дБ/К (@60° отклонение на угол сканирова- ния, @15° угол места)	6,5 дБ/К (@60° от- клонение на угол скани- рования, @15° угол места)
7	ЭИИМ	39 дБВт (@60° от- клонение на угол ска- нирования, @15° угол места)	39 дБВт (@60° от- клонение на угол ска- нирования, @15° угол места)	47 дБВт (@60° от- клонение на угол ска- нирования, @15° угол места)	47 дБВт (@60° отклонение на угол сканирования, @15° угол места)	51,7 дБВт (@60° от- клонение на угол скани- рования, @15° угол места)
8	Размеры передающей АФАР, мм	240x416	240x416	480x832	480x832	960x832
9	Размеры приёмной АФАР, мм	276x449	276x449	276x449	276x898	276x898
10	Общие размеры АС, мм	630x500	630x500	866x900	866x950	1350x950

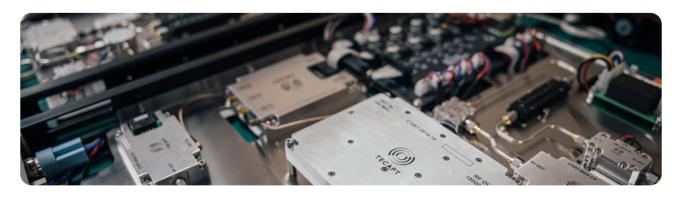
СИСТЕМЫ ТЕСТИРОВАНИЯ ПОЛЕЗНОЙ НАГРУЗКИ

Система предназначена для комплексной проверки параметров полезной нагрузки на этапе орбитальных испытаний. Обеспечивает автоматизированные измерения в различных частотных диапазонах, мониторинг сигналов и сбор телеметрии. Встроенное ПО позволяет обрабатывать и визуализировать полученные данные.

СИСТЕМЫ ТЕСТИРОВАН ПОЛЕЗНОЙ НАГРУЗКИ

Диапазоны частот: L, S, C, Ku, K, Ka

* Проектируем и изготавливаем по индивидуальным требованиям



КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Автоматизированное проведение проверок характеристик полезной нагрузки (ПН), на этапе орбитальных испытаний.
- Проведения измерений в процессе дегазации всех стволов ПН КА Ка-диапазона, Ки-диапазона и S-диапазона на этапе орбитальных испытаний.
- Хранения данных заводских испытаний основных параметров ПН, необходимых для выполнения проверок.
- Проведения мониторинга радиочастотного ресурса каналов ПН по линии вниз.
- Определения энергетических характеристик принимаемых сигналов, за счет встроенных функций измерительных средств.
- Обработку, визуализацию, и хранение результатов проверок ВЧ-характеристик и мониторинга радиочастотного ресурса ПН.

ЖАРАКТЕРИСТИКА

Компания НПК ТЕСАРТ занимается разработкой контрольно-проверочных комплексов полезной нагрузки (КПК ПН), выполняющих широкий спектр измерений характеристик тестируемого устройства на этапе орбитальных испытаний. КПК ПН представляет собой совокупность функционально объединенных и смонтированных в стойку средств измерений и других устройств, функционирующих под управлением сервера с помощью специального программного обеспечения. В зависимости от назначения, в состав КПК ПН могут входить: средства измерений, матрицы коммутации, преобразователи частоты, приемник сигналов ГЛОНАСС, сервер и программное обеспечение, комплект кабелей СВЧ и другое оборудование.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ КПК ПН

Nº	Параметр		Значение
1	Диапазон рабочих частот для трактов передачи, МГц ¹		950–2000
2	Диапазон рабочих частот для трактов инжекции, МГц 1		950–3000
3	Диапазон рабочих частот принимаемых сигна	алов, МГц ¹	950–3000
	Количество ВЧ портов, шт.:	линии передачи	2
4		линии инжекции	3
		линии приема	4
5	Электропитание КПК ПН осуществляется от однофазной цепи переменного тока по трёхпроводной схеме с заземляющим выводом. Напряжение электропитания, В		220 ± 20
6	Потребляемая мощность КПК ПН, кВт, не более		3,2
7	Габаритные размеры (длина-ширина-высота), мм, (не более)		1087-597-2019
8	Масса, кг, (не более)		300

Вид проверки ²	Допустимое значение погрешности измерений
Проверка добротности, дБ	1,5
Проверка ЭИИМ насыщения стволов, дБ	1,4
Проверка ППМ насыщения стволов, дБ	1,4
Проверка АМ-АМ характеристики, дБ	1,4
Проверка диапазона и пределов регулировки шага КУС, дБ, (не более)	1
Проверка неравномерности АЧХ стволов, дБ, (не более)	1,4
Проверка частоты переноса и ошибки частоты переноса маяка, Гц, (не более)	150
Проверка диаграммы направленности антенн на прием и на передачу, дБ, (не более)	1,4
Проверка избирательности, дБ, (не более)	1
Проверка ЭИИМ маяка, дБ, (не более)	1,4

¹ Для обеспечения работы в других диапазонах частот предлагается опция с преобразователями частот собственного производства НПК «TECAPT».

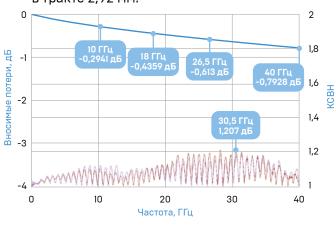
 $^{^{2}\;\;}$ Не учитываются неопределенности результатов проверок, вносимые ПН.

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

В разделе представлены высокочастотные кабельные сборки (гибкие, полужесткие) и стандартизированные корпуса РЭА 19 предназначеные для интеграции в измерительные комплексы, системы связи и автоматизации.

ПОЛУЖЕСТКИЕ КАБЕЛЬНЫЕ СБОРКИ СЕРИЯ CR220

Диапазон частот: 0-50 ГГц



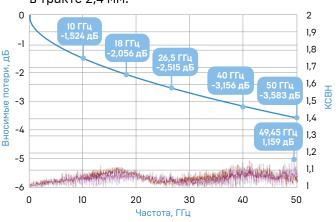
Nº	Параметр	Значение	
1	Диапазон рабочих частот (МГц)	0-50000	
2	Вносимые потери, (дБ/м, не более) 0–10 ГГц 10–18 ГГц 18–26,5 ГГц 26,5–40 ГГц 40–50 ГГц	Гарант. 2,7 3,8 4,8 6 7,2	Тип. 2,4 3,5 4,5 5,7 6,9
3	КСВН (не более) 0-10 ГГц 10-18 ГГц 18-26,5 ГГц 26,5-40 ГГц 40-50 ГГц	Гарант. 1,2 1,2 1,25 1,3 1,35	Тип. 1,15 1,15 1,2 1,25 1,25
4	Номинальное волновое сопротивление	50 Ом	
5	Минимальный радиус скругления (не более)	7 мм	
6	Внешний диаметр кабельной сборки	2,2 мм	

Nº	Параметр	Значение
7	Типы используемых соединителей	S — SMA 3 — 3,5 мм K — 2,92 мм 2 — 2,4 мм 5 — ММРХ
8	Рабочая t, °С	-60100

ТИПОВЫЕ ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Полужесткая кабельная сборка 15 см в тракте 2,92 мм.

Наименование для заказа: CR220-40-KK-150



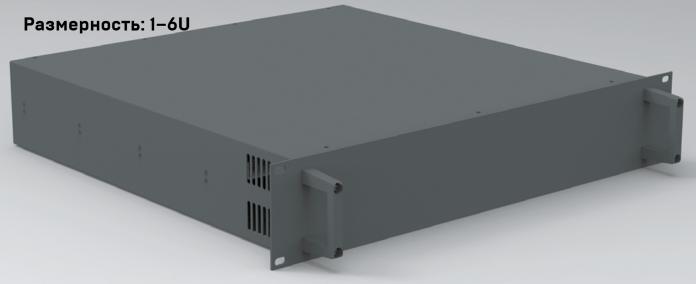
КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Экранное затухание: ≥90 дБ.
- Диапазон частот кабельных сборок: 0-50 ГГц.
- Кабельные сборки измерительного класса, фазостабильные и общего назначения.
- Низкие вносимые потери.
- Широкий ряд используемых переходов.
- Изготовление по индивидуальным требованиям.
- Повышенная температура при эксплуатации: +60...+165 °C. Пониженная: -60...-40 °C.

ТИПОВЫЕ ЭЛЕКТРИЧЕСКИЕ **ХАРАКТЕРИСТИКИ**

Фазостабильная кабельная сборка 1 метров в тракте 2,4 мм.

XAPAKTEPUCTUKA


Кабельные сборки НПК «TECAPT» имеют превосходные технические характеристики, обеспечивают высокую надежность и повторяемость. Низкие вносимые потери, фазовая стабильность и металлическая защитная пружина позволяют применять их для любых задач в области измерительной техники.

ПРИМЕР НАИМЕНОВАНИЯ

КОРПУСА РЭА 19"

* Проектируем и изготавливаем по индивидуальным требованиям

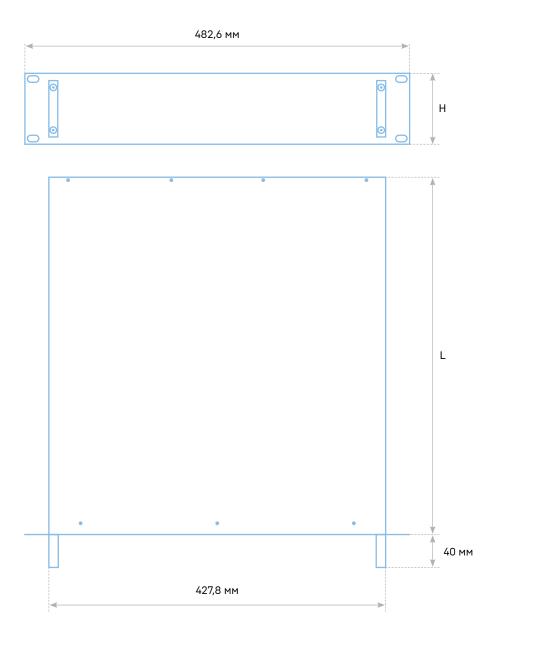
Ж КЛЮЧЕВЫЕ ОСОБЕННОСТИ

- Устанавливаются в стойку 19".
- Изготовление по индивидуальным требованиям.
- Наличие монтажной панели для компоновки изделия.
- Ручки из анодированного алюминия или нержавеющей стали.
- Скрытый монтаж компонентов на передней
- Гальванические покрытия поверхностей по требованиям заказчика.
- Наличие посадочных мест для установки ножек.
- Возможность нанесения гравировки, шелкографии или цветной УФ-печати.
- Высокая повторяемость, простота сборки.
- Материал сталь, покрытие краска полимерно-порошковая, цвет по палитре RAL.
- Отгрузка в собранном виде.
- Дооснащение органами управления по требованиям.

XAPAKTEPUCTUKA

19-дюймовые корпуса НПК «TECAPT» имеют стандартный форм-фактор для монтажа оборудования в стойку или шкаф. Могут использоваться для сборки радиоэлектронного оборудования в телекоммуникациях, аудио и видеооборудования, а также в промышленных системах.

Разработка и производство корпусов осуществляются непосредственно НПК «TECAPT» в Томске. Такой подход позволяет гарантировать контроль производства, обеспечить гибкость, точность и удовлетворить любые требования заказчика.



КОРПУСА РЭА19" 31/35

МОДЕЛЬНЫЙ РЯД ВЫПУСКАЕМЫХ РЕШЕНИЙ

Модель	Размер L, мм	Размер Н, мм
TT-19-1U	150-600	44
TT-19-2U	150-600	88
TT-19-3U	150-600	133
TT-19-4U	150-600	177
TT-19-5U	150-600	221
TT-19-6U	150-600	266

